58 research outputs found

    Discrete light localization in one dimensional nonlinear lattices with arbitrary non locality

    Full text link
    We model discrete spatial solitons in a periodic nonlinear medium encompassing any degree of transverse non locality. Making a convenient reference to a widely used material -nematic liquid crystals-, we derive a new form of the discrete nonlinear Schrodinger equation and find a novel family of discrete solitons. Such self-localized solutions in optical lattices can exist with an arbitrary degree of imprinted chirp and a have breathing character. We verify numerically that both local and non local discrete light propagation and solitons can be observed in liquid crystalline arrays.Comment: Extended version with 6 pages and 4 Figures, to appear in Phys. Rev.

    Nonradiating Photonics with Resonant Dielectric Nanostructures

    Get PDF
    Nonradiating sources of energy have traditionally been studied in quantum mechanics and astrophysics, while receiving a very little attention in the photonics community. This situation has changed recently due to a number of pioneering theoretical studies and remarkable experimental demonstrations of the exotic states of light in dielectric resonant photonic structures and metasurfaces, with the possibility to localize efficiently the electromagnetic fields of high intensities within small volumes of matter. These recent advances underpin novel concepts in nanophotonics, and provide a promising pathway to overcome the problem of losses usually associated with metals and plasmonic materials for the efficient control of the light-matter interaction at the nanoscale. This review paper provides the general background and several snapshots of the recent results in this young yet prominent research field, focusing on two types of nonradiating states of light that both have been recently at the center of many studies in all-dielectric resonant meta-optics and metasurfaces: optical {\em anapoles} and photonic {\em bound states in the continuum}. We discuss a brief history of these states in optics, their underlying physics and manifestations, and also emphasize their differences and similarities. We also review some applications of such novel photonic states in both linear and nonlinear optics for the nanoscale field enhancement, a design of novel dielectric structures with high-QQ resonances, nonlinear wave mixing and enhanced harmonic generation, as well as advanced concepts for lasing and optical neural networks.Comment: 22 pages, 9 figures, review articl

    Photonics based perfect secrecy cryptography : toward fully classical implementations

    Get PDF
    Funding: A.D.F. acknowledges support from UK EPSRC (EP/L017008/1).Developing an unbreakable cryptography is a longstanding question and a global challenge in the internet era. Photonics technologies are at the frontline of research, aiming at providing the ultimate system capable of ending the cybercrime industry by changing the way information is treated and protected now and in the long run. Such perspective discusses some of the current challenges as well as opportunities that classical and quantum systems open in the field of cryptography as both a science and an engineering.PostprintPeer reviewe

    Ultrafast all-optical order-to-chaos transition in silicon photonic crystal chips

    Get PDF
    ADF acknowledges support from EPSRC (EP/L017008/1).The interaction of light with nanostructured materials provides exciting new opportunities for investigating classical wave analogies of quantum phenomena. A topic of particular interest forms the interplay between wave physics and chaos in systems where a small perturbation can drive the behavior from the classical to chaotic regime. Here, we report an all-optical laser-driven transition from order to chaos in integrated chips on a silicon photonics platform. A square photonic crystal microcavity at telecom wavelengths is tuned from an ordered into a chaotic regime through a perturbation induced by ultrafast laser pulses in the ultraviolet range. The chaotic dynamics of weak probe pulses in the near infrared is characterized for different pump-probe delay times and at various positions in the cavity, with high spatial accuracy. Our experimental analysis, confirmed by numerical modelling based on random matrices, demonstrates that nonlinear optics can be used to control reversibly the chaotic behavior of light in optical resonators.PostprintPeer reviewe

    Suppression of transverse instabilities of dark solitons and their dispersive shock waves

    Full text link
    We investigate the impact of nonlocality, owing to diffusive behavior, on transverse instabilities of a dark stripe propagating in a defocusing cubic medium. The nonlocal response turns out to have a strongly stabilizing effect both in the case of a single soliton input and in the regime where dispersive shock waves develop "multisoliton regime". Such conclusions are supported by the linear stability analysis and numerical simulation of the propagation

    Fundamental and high-order anapoles in all-dielectric metamaterials via Fano-Feshbach modes competition

    Get PDF
    One of the most fascinating possibilities enabled by metamaterials is the strong reduction of the electromagnetic scattering from nanostructures. In dielectric nanoparticles, the formation of a minimal scattering state at specific wavelengths is associated with the excitation of photonic anapoles, which represent a peculiar type of radiationless state and whose existence has been demonstrated experimentally. In this work, we investigate the formation of anapole states in generic dielectric structures by applying a Fano–Feshbach projection scheme, a general technique widely used in the study of quantum mechanical open systems. By expressing the total scattering from the structure in terms of an orthogonal set of internal and external modes, defined in the interior and in the exterior of the dielectric structure, respectively, we show how anapole states are the result of a complex interaction among the resonances of the system and the surrounding environment. We apply our approach to a circular resonator, where we observe the formation of higher-order anapole states, which are originated by the superposition of several internal resonances of the system

    Perfect secrecy cryptography via mixing of chaotic waves in irreversible time-varying silicon chips

    Get PDF
    A.D.F. acknowledges support from EPSRC (EP/L017008/1). A.F. acknowledges support from KAUST (OSR-2016-CRG5-2995). The research data underpinning this publication can be accessed at https://doi.org/10.17630/19156fc3-cc1f-4ee3-b553-f02042cf89a0.Protecting confidential data is a major worldwide challenge. Classical cryptography is fast and scalable, but its broken by quantum algorithms. Quantum cryptography is unclonable, but requires quantum installations that are more expensive, slower, and less scalable than classical optical networks. Here we show a perfect secrecy cryptography in classical optical channels. The system exploits correlated chaotic wavepackets, which are mixed in inexpensive and CMOS compatible silicon chips. The chips can generate 0:1 Tbit of different keys for every mm of length of the input channel, and require the transmission of an amount of data that can be as small as 1/1000 of the message’s length. We discuss the security of this protocol for an attacker with unlimited technological power, and who can access the system copying any of its part, including the chips. The second law of thermodynamics and the exponential sensitivity of chaos unconditionally protect this scheme against any possible attack.Publisher PDFPeer reviewe
    corecore